
CSCC24 Week 2 Notes
1

Pattern Matching:
- Pattern matching​ means that you write down a literal at the place where you're

supposed to write the parameter(s).
- E.g.

- E.g.

Case Expressions:

- Allows us to write control flows on data types.
- Matches from top to bottom.
- Note:​ The pattern ​_​ means match anything.
- Syntax:

case <expr> of
 <pattern1> -> <result1>
 <pattern2> -> <result2>
 ...
 <patternN> -> <resultN>

- E.g.

CSCC24 Week 2 Notes
2

- E.g.

If statements:

- Syntax:
if (condition)
 then (value)
else if (condition)
 then (value)
else
 (value)

- E.g.

- Note:​ The else if is conditional, but you must have the if and the else.

type, term, value:

- Note:​ ​term​ is also widely known as ​expression​.

CSCC24 Week 2 Notes
3

- Note:​ 5+4 is a ​term​; the result of evaluating it, 9, is a ​value​.
I.e. ​term​ is your code and ​value​ is the result of the term.

Synthesis and Evaluation:
- Synthesis​ is how you write code.
- Evaluation​ is how the computer runs your code.
- For synthesis, using induction can help you write the code.
- E.g. Consider the factorial code below:

Here is the mindset of how to write it:

WTP: For all natural n: Factorial n = n!
Base case:
WTP: Factorial 0 = 0!
Notice that 0! = 1, so if I code up Factorial 0 = 1, I get Factorial 0 = 0!.
Induction step:
Let natural n ≥ 1 be given.
Induction hypothesis: Factorial (n-1) = (n-1)!
WTP: Factorial n = n!
Notice that n! = n*(n-1)!

= n * Factorial (n-1) by I.H.
So if I code up Factorial n = n * Factorial (n-1), I get Factorial n = n!.

Here is the evaluation of factorial 3:
→ 3 * factorial(3 - 1)
→ 3 * factorial(2)
→ 3 * (2 * factorial(2 - 1))
→ 3 * (2 * factorial(1))
→ 3 * (2 * (1 * factorial(1-1)))
→ 3 * (2 * (1 * (factorial(0))))
→ 3 * (2 * (1 * 1))
→ 3 * 2
→ 6

Guards:
- Denoted by “​|​”
- We use | to say alternatively.

CSCC24 Week 2 Notes
4

- E.g.

- E.g.

Lists:

- Some types of lists are [Integer], [Bool], [] Integer, [] Bool, etc.
- An empty list is denoted as [].
- A list literal is denoted like [4, 1, 6].

Note:​ Remember that Haskell makes lists in this way:
(4 : (1 : (6 : ([])))) or 4 : 1 : 6 : []
The parentheses are optional.

- Formally (recursive definition as in CSCB36): a list is one of:
- []
- <an item here> : <a list here>

- Note:​ These are singly-linked lists. These are not arrays.
- Note:​ Lists are immutable in Haskell.
- E.g. Insertion Sort:

Strategy: Have a helper function insert.
Take element e and list xs. xs is assumed to have been sorted in increasing order.
Put e into the “right place” in xs so the whole is still sorted.
E.g. insert 4 [1,3,5,8,9,10] = [1,3,4,5,8,9,10]

CSCC24 Week 2 Notes
5

Here’s the code:

E.g.

