CSCC24 Week 2 Notes

Pattern Matching:
- Pattern matching means that you write down a literal at the place where you're
supposed to write the parameter(s).
- E.g.
factorial :: Int -> Int

factorial @ 1 : : At

factorial n =n * factnrialfn = ﬂﬂ

*Main> factorial &
1286

- Eag.
fibanocci :: Int
fibanocci @ =
fibanocci 1 : pE . :
fibanocci fibanocci(n-1) + fibanocci(n-2)

ﬂ*ﬂain> fibanocci 5
a8

Case Expressions:
- Allows us to write control flows on data types.
- Matches from top to bottom.
- Note: The pattern _ means match anything.
- Syntax:
case <expr> of
<pattern1> -> <result1>
<pattern2> -> <result2>

<patternN> -> <resultN>
- E.g
fibanocci :: 1
fibanocci x = case x of
a8 ->» 8
1 -»>1

n -» fibanocci nl + fibanocci n2

nl n-1
n2 n - 2

*Main> fibanocci 5
5

CSCC24 Week 2 Notes

fibanocci :: Int
fibanocci % = case
@ ->8
1 >

n - let

fibanocci nl + fibanocci n2

*Mainy fibanocci 5
5

If statements:
- Syntax:
if (condition)
then (value)
else if (condition)
then (value)
else
(value)
- E.g
factorial
factorial n
ifn<2

then]

n * factorial(n-1}

¥*Main»> factorial 5
126

- Note: The else if is conditional, but you must have the if and the else.
type, term, value:

Those two things are called:

f (x¥2 + 1) :: Integer

AAAMAAANNAAN AAAAANN
term type

One more example:

h . g :: Char -> Bool

MAAAAN AABMAMAAAAANN

term type

- Note: term is also widely known as expression.

CSCC24 Week 2 Notes

- Note: 5+4 is a term; the result of evaluating it, 9, is a value.
l.e. term is your code and value is the result of the term.
Synthesis and Evaluation:
- Synthesis is how you write code.
- Evaluation is how the computer runs your code.
- For synthesis, using induction can help you write the code.
- E.g. Consider the factorial code below:

factorial :: Int -> Int
factorial @ 1 AR B

factorial n = n * factorialfn - ﬁﬂ

Here is the mindset of how to write it:
WTP: For all natural n: Factorial n = n!
Base case:
WTP: Factorial 0 = 0!
Notice that 0! = 1, so if | code up Factorial 0 = 1, | get Factorial 0 = O!.
Induction step:
Let natural n = 1 be given.
Induction hypothesis: Factorial (n-1) = (n-1)!
WTP: Factorial n = n!
Notice that n! = n*(n-1)!

=n * Factorial (n-1) by I.H.

So if | code up Factorial n = n * Factorial (n-1), | get Factorial n = n!.

Here is the evaluation of factorial 3:

— 3 * factorial(3 - 1)

— 3 * factorial(2)

— 3 * (2 * factorial(2 - 1))

— 3 * (2 * factorial(1))

— 3*(2* (1 * factorial(1-1)))

— 3*(2* (17 (factorial(0))))

—-3*(2*(1*1))

—3*2

— 6

Guards:
- Denoted by |’
- We use | to say alternatively.

CSCC24 Week 2 Notes

absolute ::
absolute x

| x <@ =(x)
| otherwise = x

5

factorial :: 1
factorial n

|otherwise = n * factorial(n-1)

*Main»> factorial G
128

Some types of lists are [Integer], [Bool], [] Integer, [] Bool, etc.
An empty list is denoted as [].
A list literal is denoted like [4, 1, 6].
Note: Remember that Haskell makes lists in this way:
@4:(1:06:(N))ord:1:6:1]
The parentheses are optional.
Formally (recursive definition as in CSCB36): a list is one of:
-
- <an item here> : <a list here>
Note: These are singly-linked lists. These are not arrays.
Note: Lists are immutable in Haskell.
E.g. Insertion Sort:
Strategy: Have a helper function insert.
Take element e and list xs. xs is assumed to have been sorted in increasing order.
Put e into the “right place” in xs so the whole is still sorted.
E.g. insert 4 [1,3,5,8,9,10] = [1,3,4,5,8,9,10]

CSCC24 Week 2 Notes

Here’s the code:

insert

insert e

»

’

insert e xs@(x:xt

| otherwise = x : insert e xt

insertionSort
insertionSort [] []
insertionSort (x:xt) = insert x |(insertionSort x

E.g.

*Main> insertionSort [3,2,1]
[1,2,3]

